Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.284
Filtrar
1.
Biotechnol J ; 19(5): e2300596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719591

RESUMO

Although fibroblast growth factor 7 (FGF7) is known to promote wound healing, its mass production poses several challenges and very few studies have assessed the feasibility of producing FGF7 in cell lines such as Chinese hamster ovary (CHO) cells. Therefore, this study sought to produce recombinant FGF7 in large quantities and evaluate its wound healing effect. To this end, the FGF7 gene was transfected into CHO cells and FGF7 production was optimized. The wound healing efficacy of N-glycosylated FGF7 was evaluated in animals on days 7 and 14 post-treatment using collagen patches (CPs), FGF7-only, and CP with FGF7 (CP+FGF7), whereas an untreated group was used as the control. Wound healing was most effective in the CP+FGF7 group. Particularly, on day 7 post-exposure, the CP+FGF7 and FGF7-only groups exhibited the highest expression of hydroxyproline, fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor. Epidermalization in H&E staining showed the same order of healing as hydroxyproline content. Additionally, the CP+FGF7 and FGF7-only group exhibited more notable blood vessel formation on days 7 and 14. In conclusion, the prepared FGF7 was effective in promoting wound healing and CHO cells can be a reliable platform for the mass production of FGF7.


Assuntos
Cricetulus , Fator 7 de Crescimento de Fibroblastos , Proteínas Recombinantes , Cicatrização , Animais , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cicatrização/efeitos dos fármacos , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Humanos , Cricetinae , Hidroxiprolina/metabolismo , Transfecção , Colágeno/metabolismo
2.
Sci Rep ; 14(1): 10661, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724599

RESUMO

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Assuntos
Anticorpos Biespecíficos , Cricetulus , Proteína do Gene 3 de Ativação de Linfócitos , Receptor de Morte Celular Programada 1 , Receptores Imunológicos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Camundongos , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Células CHO , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Feminino , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Cricetulus , Modelos Animais de Doenças , Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Esfingomielina Fosfodiesterase/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Camundongos , Humanos , Células CHO , beta-Ciclodextrinas/farmacologia , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Pregnenolona/farmacologia , Sobrevivência Celular/efeitos dos fármacos
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731905

RESUMO

A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.


Assuntos
Cricetulus , Canal de Sódio Disparado por Voltagem NAV1.5 , Linhagem , Penetrância , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Humanos , Animais , Células CHO , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Espanha , Mutação com Perda de Função , Fenótipo , Mutação
5.
PLoS Negl Trop Dis ; 18(5): e0011897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739677

RESUMO

Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.


Assuntos
Arvicolinae , Modelos Animais de Doenças , Leishmania , Leishmaniose , Camundongos Endogâmicos BALB C , Animais , Leishmania/classificação , Leishmaniose/parasitologia , Camundongos , Cricetinae , Arvicolinae/parasitologia , Cricetulus , Feminino
6.
Sci Rep ; 14(1): 10863, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740831

RESUMO

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Assuntos
Cricetulus , Cininas , Neuropeptídeos , Peristaltismo , Animais , Cininas/metabolismo , Células CHO , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Músculos/metabolismo , Músculos/fisiologia , Carrapatos/metabolismo , Carrapatos/fisiologia , Rhipicephalus/metabolismo , Rhipicephalus/fisiologia , Rhipicephalus/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética
7.
Eur J Pharmacol ; 973: 176587, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642667

RESUMO

Agonist-induced phosphorylation is a crucial step in the activation/deactivation cycle of G protein-coupled receptors (GPCRs), but direct determination of individual phosphorylation events has remained a major challenge. We have recently developed a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in 96-well plates, thus eliminating the need for western blot analysis. In the present study, we adapted this assay to three novel phosphosite-specific antibodies directed against the neurokinin 1 (NK1) receptor, namely pS338/pT339-NK1, pT344/pS347-NK1, and pT356/pT357-NK1. We found that substance P (SP) stimulated concentration-dependent phosphorylation of all three sites, which could be completely blocked in the presence of the NK1 receptor antagonist aprepitant. The other two endogenous ligands of the tachykinin family, neurokinin A (NKA) and neurokinin B (NKB), were also able to induce NK1 receptor phosphorylation, but to a much lesser extent than substance P. Interestingly, substance P promoted phosphorylation of the two distal sites more efficiently than that of the proximal site. The proximal site was identified as a substrate for phosphorylation by protein kinase C. Analysis of GPCR kinase (GRK)-knockout cells revealed that phosphorylation was mediated by all four GRK isoforms to similar extents at the T344/S347 and the T356/T357 cluster. Knockout of all GRKs resulted in abolition of all phosphorylation signals highlighting the importance of these kinases in agonist-mediated receptor phosphorylation. Thus, the 7TM phosphorylation assay technology allows for rapid and detailed analyses of GPCR phosphorylation.


Assuntos
Receptores da Neurocinina-1 , Substância P , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-1/agonistas , Fosforilação/efeitos dos fármacos , Humanos , Substância P/farmacologia , Animais , Imunoensaio/métodos , Cricetulus , Células CHO , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Neurocinina A/farmacologia , Neurocinina A/metabolismo
8.
J Med Chem ; 67(9): 7112-7129, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38647397

RESUMO

Research into kappa opioid receptor (KOR) agonists with attenuated central-nervous-system side effects is a critical focus for developing productive and safe analgesics. Herein, a series of ortho-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoethano-tetrahydronorthebaines were designed, synthesized, and subjected to bioassays. Compound 7a exhibited high subtype selectivity and potent agonistic activity toward KOR (KOR, Ki = 3.9 nM, MOR/KOR = 270, DOR/KOR = 1075; [35S]GTPγS binding, EC50 = 3.4 nM). Additionally, this compound exhibited robust and persistent antinociceptive effects in rodent models with different animal strains (hot plate test, ED50 = 0.20-0.30 mg/kg, i.p.; abdominal constriction test, ED50 = 0.20-0.60 mg/kg, i.p.), with its KOR-mediated mechanism for antinociception firmly established. Notably, compound 7a, unlike conventional KOR agonists, displayed minimal sedation and aversion at the antinociceptive ED50 dose. This feature addresses a crucial limitation in existing KOR agonists, positioning compound 7a as a promising novel therapeutic agent.


Assuntos
Receptores Opioides kappa , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Animais , Camundongos , Relação Estrutura-Atividade , Masculino , Humanos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/síntese química , Hipnóticos e Sedativos/química , Ratos , Analgésicos/farmacologia , Analgésicos/síntese química , Analgésicos/química , Descoberta de Drogas , Ratos Sprague-Dawley , Cricetulus
9.
Front Immunol ; 15: 1308238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660313

RESUMO

Introduction: Limited data were available on the effectivenessfour years after Homo or Hetero prime-boost with 10 µg Hansenulapolymorpha recombinant hepatitis B vaccine (HepB-HP) and 20 µgChinese hamster ovary cell HepB (HepB-CHO). Methods: A crosssectional study was performed in maternalhepatitis B surface antigen (HBsAg)-negative children whoreceived one dose of 10 µg HepB-HP at birth, Homo or Heteroprime-boost with 10 µg HepB-HP and 20 µg HepB-CHO at 1 and 6months. HBsAg and hepatitis B surface antibody (anti-HBs) fouryears after immunization were quantitatively detected by achemiluminescent microparticle immunoassay (CMIA). Results: A total of 359 children were included; 119 childrenreceived two doses of 10 µg HepB-HP and 120 children receivedtwo doses of 20 µg HepB-CHO, called Homo prime-boost; 120children received Hetero prime-boost with 10 µg HepB-HP and 20µg HepB-CHO. All children were HBsAg negative. The geometricmean concentration (GMC) and overall seropositivity rate (SPR) ofanti-HBs were 59.47 (95%CI: 49.00 - 72.16) mIU/ml and 85.51%(307/359). Nearly 15% of the study subjects had an anti-HBsconcentration < 10 mIU/ml and 5.01% had an anti-HBsconcentration ≤ 2.5 mIU/ml. The GMC of the 20 µg CHO Homoprime-boost group [76.05 (95%CI: 54.97 - 105.19) mIU/ml] washigher than that of the 10 µg HP Homo group [45.86 (95%CI:31.94 - 65.84) mIU/ml] (p = 0.035). The GMCs of the Heteroprime-boost groups (10 µg HP-20 µg CHO and 20 µg CHO-10 µgHP) were 75.86 (95% CI: 48.98 - 107.15) mIU/ml and 43.65(95%CI: 27.54 - 69.18) mIU/ml, respectively (p = 0.041). Aftercontrolling for sex influence, the SPR of the 20 µg CHO Homoprime-boost group was 2.087 times than that of the 10 µg HPHomo group. Discussion: The HepB booster was not necessary in the generalchildren, Homo/Hetero prime-boost with 20 µg HepB-CHO wouldincrease the anti-HBs concentration four years after immunization,timely testing and improved knowledge about the self-pay vaccinewould be good for controlling hepatitis B.


Assuntos
Cricetulus , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vacinas contra Hepatite B , Hepatite B , Imunização Secundária , Vacinas Sintéticas , Humanos , Vacinas contra Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Antígenos de Superfície da Hepatite B/imunologia , Feminino , Animais , Masculino , Hepatite B/prevenção & controle , Hepatite B/imunologia , Anticorpos Anti-Hepatite B/sangue , Anticorpos Anti-Hepatite B/imunologia , Células CHO , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Estudos Transversais , Criança , Lactente , Pré-Escolar , Vírus da Hepatite B/imunologia
10.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651269

RESUMO

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


Assuntos
Sistemas CRISPR-Cas , Cricetulus , Edição de Genes , Células CHO , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Anticorpos Monoclonais/genética , Proteínas Recombinantes/genética , Técnicas de Inativação de Genes/métodos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Cricetinae , Engenharia Genética/métodos
11.
MAbs ; 16(1): 2342243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650451

RESUMO

The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.


Assuntos
Processamento Alternativo , Animais , Subunidades Proteicas/genética , Humanos , Galinhas , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/biossíntese , Células CHO , Éxons/genética , Cricetulus , Proteínas de Fluorescência Verde/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/biossíntese , Precursores de RNA/genética
12.
J Chromatogr A ; 1722: 464891, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608368

RESUMO

Particle size is a critical parameter of chromatographic resins that significantly affects protein separation. In this study, effects of resin particle sizes (31.26 µm, 59.85 µm and 85.22 µm named Aga-31, Aga-60 and Aga-85, respectively) on antibody adsorption capacity and separation performance of a hybrid biomimetic ligand were evaluated. Their performance was investigated through static adsorption and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC). The static adsorption results revealed that the Qmax for hIgG was 152 mg/g resin with Aga-31, 151 mg/g resin with Aga-60, and 125 mg/g resin with Aga-85. Moreover, the DBC at 10% breakthrough for hIgG with a residence time of 2 min was determined to be 49.4 mg/mL for Aga-31, 45.9 mg/mL for Aga-60, and 38.9 mg/mL for Aga-85. The resins with smaller particle sizes exhibited significantly higher capacity compared to typical commercial agarose resins and a Protein A resin (MabSelect SuRe). Furthermore, the Aga-31 resin with the hybrid biomimetic ligand demonstrated exceptional performance in terms of IgG purity (>98%) and recovery (>96%) after undergoing 20 separation cycles from CHO cell supernatant. These findings are helpful in further chromatographic resin design for the industrial application of antibody separation and purification.


Assuntos
Imunoglobulina G , Tamanho da Partícula , Adsorção , Ligantes , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Cromatografia de Afinidade/métodos , Materiais Biomiméticos/química , Animais , Biomimética/métodos , Cricetulus , Células CHO
13.
J Chromatogr A ; 1722: 464873, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626540

RESUMO

3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.


Assuntos
Anticorpos Monoclonais , Cricetulus , Imunoglobulina G , Impressão Tridimensional , Proteína Estafilocócica A , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/química , Células CHO , Cromatografia de Afinidade/métodos , Animais , Cromatografia por Troca Iônica/métodos , Tinta
14.
SLAS Discov ; 29(3): 100148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38677875

RESUMO

Fluorescence-based potassium channel assays are typically run on expensive, hard to obtain, fluorescence imaging kinetic plate readers that are uncommon in most laboratories. Here we describe the use of the Brilliant Thallium Snapshot assay to conduct an endpoint potassium channel assay, so that it can be used across multiple plate reader platforms that are more common in many labs. These methods will allow users to identify modulators of potassium channels. For this work, we have taken a kinetic mode Molecular Devices FLIPR based protocol and adapted it to be utilized on endpoint plate readers, such as the BMG Labtech PHERAstar, to identify activators of GIRK channels in CHO cells. We demonstrate that both plate readers are functionally competent at generating excellent Z' values which makes them ideally suited to finding corollary hits from the Sigma LOPAC 1,280 screening collection. Importantly, this assay has also been validated using a high content reader, demonstrating the possibility of spatially resolving signals from individual cells within a mixed cell population. The compendium of these results shows the flexibility, accessibility and functionality of endpoint-compatible potassium channel assay readouts on more common plate readers.


Assuntos
Cricetulus , Células CHO , Animais , Cinética , Canais de Potássio/metabolismo , Humanos , Bioensaio/métodos , Microscopia/métodos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ensaios de Triagem em Larga Escala/métodos
15.
Biotechnol J ; 19(4): e2400078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651251

RESUMO

Due to their high-quality characteristics, Chinese hamster ovary (CHO) cells have become the most widely used and reliable host cells for the production of recombinant therapeutic proteins in the biomedical field. Previous studies have shown that the m6A reader YTHDF3, which contains the YTH domain, can affect a variety of biological processes by regulating the translation and stability of target mRNAs. This study investigates the effect of YTHDF3 on transgenic CHO cells. The results indicate that stable overexpression of YTHDF3 significantly enhances recombinant protein expression without affecting host cell growth. Transcriptome sequencing indicated that several genes, including translation initiation factor, translation extension factor, and ribosome assembly factor, were upregulated in CHO cells overexpressing YTHDF3. In addition, cycloheximide experiments confirmed that YTHDF3 enhanced transgene expression by promoting translation in CHO cells. In conclusion, the findings in this study provide a novel approach for mammalian cell engineering to increase protein productivity by regulating m6A.


Assuntos
Cricetulus , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Proteínas Recombinantes , Animais , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cricetinae
16.
J Biotechnol ; 387: 79-88, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582408

RESUMO

Among all the operating parameters that control the cell culture environment inside bioreactors, appropriate mixing and aeration are crucial to ensure sufficient oxygen supply, homogeneous mixing, and CO2 stripping. A model-based manufacturing facility fit approach was applied to define agitation and bottom air flow rates during the process scale-up from laboratory to manufacturing, of which computational fluid dynamics (CFD) was the core modeling tool. The realizable k-ε turbulent dispersed Eulerian gas-liquid flow model was established and validated using experimental values for the volumetric oxygen transfer coefficient (kLa). Model validation defined the process operating parameter ranges for application of the model, identified mixing issues (e.g., impeller flooding, dissolved oxygen gradients, etc.) and the impact of antifoam on kLa. Using the CFD simulation results as inputs to the models for oxygen demand, gas entrance velocity, and CO2 stripping aided in the design of the agitation and bottom air flow rates needed to meet cellular oxygen demand, control CO2 levels, mitigate risks for cell damage due to shear, foaming, as well as fire hazards due to high O2 levels in the bioreactor gas outlet. The recommended operating conditions led to the completion of five manufacturing runs with a 100% success rate. This model-based approach achieved a seamless scale-up and reduced the required number of at-scale development batches, resulting in cost and time savings of a cell culture commercialization process.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Hidrodinâmica , Oxigênio , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Oxigênio/metabolismo , Oxigênio/análise , Dióxido de Carbono/metabolismo , Simulação por Computador , Células CHO , Cricetulus , Modelos Biológicos , Animais
17.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573360

RESUMO

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Assuntos
Proteínas Oncogênicas , Proteínas de Sinalização YAP , Animais , Cricetinae , Células CHO , Cricetulus , Fatores de Transcrição/genética , Divisão Celular , Serina-Treonina Quinases TOR
18.
Commun Biol ; 7(1): 393, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561432

RESUMO

Multimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis. In vitro studies demonstrate the selective cytotoxicity of these targeted nanocarriers towards HT-29 cells compared to CHO cells, leading to a significant reduction in HT-29 cell survival when combined with irradiation. Targeted delivery of nanocarriers in vivo is validated by enhanced anti-tumor effects with reduced side effects following chemo-radiotherapy, along with imaging in a CRC mouse model. This approach holds promise for improved CRC theranostics.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Pontos Quânticos , Camundongos , Animais , Cricetinae , Ouro , Medicina de Precisão , Dióxido de Silício , Cricetulus , Neoplasias Colorretais/patologia , Quimiorradioterapia
19.
Sci Rep ; 14(1): 9652, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671143

RESUMO

Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.


Assuntos
Agonistas Muscarínicos , Receptores Muscarínicos , Agonistas Muscarínicos/farmacologia , Receptores Muscarínicos/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Piridinas/farmacologia , Carbacol/farmacologia , Células CHO , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética
20.
Environ Sci Technol ; 58(17): 7543-7553, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632926

RESUMO

Coumarin was detected as one of the most abundant compounds by nontargeted analysis of natural product components in actual water samples prior to disinfection. More importantly, prechlorination of humic acid generated 3-hydroxycoumarin and monohydroxy-monomethyl-substituted coumarin with a total yield of ≤10.1%, which suggested the humic substance in raw water is an important source of coumarins. 7-Hydroxycoumarin, 6-hydroxy-4-methylcoumarin, 6,7-dihydroxycoumarin, and 7-methoxy-4-methylcoumarin were identified in raw water by high-performance liquid chromatography-tandem high-resolution mass spectrometry because only some coumarin standards were commercially available. Their chlorination generated monochlorinated and polychlorinated coumarins, and their structures were confirmed by the synthesized standards. These products could form at various dosages of chlorine and pH levels, and some with a concentration of 600 ng/L can be stable in tap water for days. 3,6,8-Trichloro-7-hydroxycoumarin, 3-chloro-7-methoxy-4-methylcoumarin, and 3,6-dichloro-7-methoxy-4-methylcoumarin were first identified in finished water with concentrations of 0.0670, 78.1, and 14.7 ng/L, respectively, but not in source water, suggesting that they are new DBPs formed during disinfection. The cytotoxicity of 3-chloro-7-methoxy-4-methylcoumarin in CHO-K1 cells was comparable to those of 2,6-dibromo-1,4-benzoquinone and 2,6-dichloro-1,4-benzoquinone in TIC-Tox analyses, suggesting that further investigation of their occurrence and control in drinking water systems is warranted.


Assuntos
Cumarínicos , Cricetulus , Água Potável , Halogenação , Poluentes Químicos da Água , Cumarínicos/química , Água Potável/química , Animais , Células CHO , Cricetinae , Cromatografia Líquida de Alta Pressão , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA